Unit 1: Number Sense Teaching Window: August 20 - August 31 MasteryConnect Window: September 4 - 21 | Benchmark | Power
Standard | I can statement | New
Missouri
Learning
Standard | Common
Core
Standard | Go Math
Resource | Engage NY
Resources | |-----------|-------------------|---|---|----------------------------|---------------------|------------------------| | 3.1 | | I can read, write and identify whole numbers within 100,000 using base ten numerals, number names and expanded form. | 3.NBT.A.2 | | 1 | Module 2 | | 3.2 | | I can demonstrate fluency with addition and subtraction within 1,000. | 3.NBT.A.3 | 3.NBT.A.2 | 1 | Module 2 | | 3.3 | * | I can interpret the reasonableness of answers using mental computation and estimation strategies including rounding (to the nearest 10 or 100). | 3.NBT.A.1
&
3.RA.D.10 | 3.NBT.A.1
&
3.OA.D.8 | 1 | Module 2 | ## **Unit 2: Multiplication & Division** Teaching Window: September 10 - November 2 Test Window: November 5 - November 9 **MasteryConnect Window: November 5 - November 30** | Benchmark | Power
Standard | I can statement | New
Missouri
Learning
Standard | Common
Core
Standard | Go Math
Resource | Engage NY
Resources | |----------------------|-------------------|--|---|-----------------------------------|---------------------|------------------------| | 3.4 | * | I can interpret products/quotients by describing in words or drawings a problem that illustrates a multiplication or division situation. | 3.RA.A.3,
3.RA.A.1,
3.RA.A.2 | 3.OA.A.1,
3.OA.A.2 | 3, 6 | Module 1 | | 3.5 | | I can multiply whole numbers by multiples of 10 in the range of 10-100. | 3.NBT.A.4 | 3.NBT3 | 5 | Module 1 | | 3.6 | | I can use multiplication and division within 100 to solve problems. | 3.RA.A.4 | 3.OA.A.3 | 5 | Module 1, 3 | | 3.7 | * | I can multiply and divide within 100 (products of two one-digit numbers) using strategies such as the relationship between multiplication and division using properties of operations. | 3.RA.B.6
3.RA.C.7 | 3.OA.B.5,
3.OA.B.6
3.OA.C.7 | 3, 4, 7 | Module 1, 3 | | 3.8* | | I can determine the unknown number in a multiplication or division equation relating three whole numbers. | 3.RA.A.5 | 3.OA.A.4 | 5 | Module 1, 3 | | 3.9* | * | I can write and solve two-step problems involving variables using any of the four operations. | 3.RA.D.9
3.GM.B.8 | 3.OA.D.8 | 1, 2, 4, 5, 7 | Module 1, 3 | | 3.10 | | I can identify arithmetic patterns and explain
the patterns using properties of operations. | 3.RA.E.11 | 3.OA.D.9 | 1, 4, 5 | Module 3 | | 3.11 | * | I can demonstrate fluency within multiplication with single digits, 100 problems in 5 minutes with 80% accuracy. | 3.RA.C.8 | 3.OA.C.7 | 4 | Module 1 | | Performance
Event | | Performance Event: Cookie Monster **This will be the unit 2 scrimmage** | | | | | ## **Unit 3: Area, Perimeter** Teaching Window: November 12 - December 14 Test Window: December 17 - December 21 MasteryConnect Window: December 17 - January 18 | Benchmark | Power
Standard | I can statement | New
Missouri
Learning
Standard | Common
Core
Standard | Go Math
Resource | Engage NY
Resources | |-----------|-------------------|--|---|----------------------------|---------------------|------------------------| | 3.12 | | I can solve problems involving perimeters of polygons. | 3.GM.D.15 | 3.MD8 | 11 | Module 7 | | 3.13 | | I can correctly calculate and label area by tiling (no gaps or overlaps) and multiplying the side lengths that result in the same value. | 3.GM.C.9 &
3.GM.C.11 | 3.MD5/6 | 11 | Module 4 | | 3.14 | | I can multiply whole number side lengths to solve problems involving the area of rectangles and label in square units. | 3.GM.C.10 &
3.GM.C.12 | 3.MD7a/b | 11 | Module 4 | | 3.15 | * | I can find rectangular arrangements that can be formed for a given area. | 3.GM.C.13 | 3.MD7d | 11 | Module 4 | | 3.16 | | I can understand rectangles can have equal perimeters but different areas, and rectangles can have equal areas but different perimeters. | 3.GM.D.16 | 3.MD8d | 11 | Module 7 | | 3.17 | * | I can decompose a rectangle into smaller rectangles to find the area of the original rectangle. | 3.GM.C.14 | 3.MD7c | 11 | Module 4 | ### **Unit 4: Fractions** Teaching Window: January 8 - February 14 Test Window: February 19 - February 22 MasteryConnect Window: February 19 - March 5 | Benchmark | Power
Standard | I can statement | New
Missouri
Learning
Standard | Common
Core
Standard | Go Math
Resource | Engage NY
Resources | |-----------|-------------------|--|---|----------------------------|---------------------|------------------------| | 3.18 | | I can partition a whole unit into equal parts, identify and label each unit and describe the numerator and denominator in each fraction. | 3.NF.A.1 &
3.NF.A.2 | 3.NF.A.1 | 8 | Module 5 | | 3.19 | * | I can represent fractions on a number line by partitioning the whole into equal segments and labeling each segment as a fraction. | 3.GM.A.3 &
3.NF.A.3 | 3.NF.A.2 | 8 | Module 5 | | 3.20 | * | I can compare two fractions with the same numerator or denominator using symbol >, =, or <, and justify the solution. | 3.NF.A.6 | 3.NF.A.3 | 9 | Module 5 | | 3.21 | | I can explain why fractions are only valid when the fractions are comparing the same whole. (Comparing shapes that are the same size.) | 3.NF.A.7 | 3.NF.A.3 | 9 | Module 5 | | 3.22 | * | I can recognize and generate equivalent fractions using visual models and number lines, and justify why the fractions are equivalent. | 3.NF.A.4 &
3.NF.A.5 | 3.NF.A.3 | 9 | Module 5 | ## **Unit 5: Time, Measurement and Geometry** Teaching Window: February 25 - March 29 Test Window: April 1 - April 5 MasteryConnect Window: April 1 - April 26 | Benchmark | Power
Standard | I can statement | New Missouri Learning Standard | Common
Core
Standard | Go Math
Resource | Engage NY
Resources | |-----------|-------------------|--|--------------------------------|----------------------------|---------------------|------------------------| | 3.23* | * | I can estimate time intervals in minutes. | 3.GM.B.5 | 3.MD.A.1 | 10 | Module 2 | | 3.24* | | I can tell and write time to the nearest minute. | 3.GM.B.4 | 3.MD.A.1 | 10 | Module 2 | | 3.25 | | I can solve word problems involving the addition and subtraction of minutes. | 3.GM.B.6 | 3.MD.A.1 | 10 | Module 2 | | 3.26 | | I can measure or estimate length, liquid volume, and weight of objects. | 3.GM.B.7 | 3.MD.A.2 | 10 | Module 2 | | 3.27* | | I can classify the shapes in different categories that may share attributes and that the shared attributes can define a larger category. | 3.GM.A.1 | 3.G1a | 12 | Module 7 | | 3.28* | * | I can distinguish rhombuses and rectangles as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to these subcategories. | 3.GM.A.2 | 3.G1b | 12 | Module 7 | ## Unit 6: Data Teaching Window: April 8 - May 3 Test Window: May 6 - 10 MasteryConnect Window: May 6 - May 17 | Waster y Connect Window. Way 0 - Way 17 | | | | | | | |---|-------------------|---|---|----------------------------|---------------------|------------------------| | Benchmark | Power
Standard | I can statement | New
Missouri
Learning
Standard | Common
Core
Standard | Go Math
Resource | Engage NY
Resources | | 3.29 | | I can create frequency tables, scaled picture graphs, and bar graphs to represent a data set with several categories. | 3.DS.A.1 | 3.MD.B.3 | 2 | Module 6 | | 3.30 | * | I can solve one and two-step problems using information presented in bar and/or picture graphs. | 3.DS.A.2 | 3.MD.B.3 | 2 | Module 6 | | 3.31 | | I can answer questions using data shown on a line plot. | 3.DS.A.4 | 3.MD.B.4 | 2 | Module 6 | | 3.32 | | I can create a line plot to represent data. | 3.DS.A.3 | 3.MD.B.4 | 2 | Module 6 | | Performance
Event | | Performance Event **This will be the unit 6 scrimmage** | | | | | # Teacher Notes | BM | Item Specifications
Content Limits/Assessment Boundaries | Teacher Notes | |--------|---|---| | Unit 1 | : Number Sense | | | 3.1 | For large scale assessment purposes, use "base ten numerals", "number name" and "expanded form". For classroom purposes "base ten numerals" and "standard form" may be used interchangeably. For classroom purposes "number names" and "word form" may be used interchangeably. Numbers included begin at one and are not greater than one hundred thousand. Do Not use multiplication symbols within the expanded form. (e.g., 642= (6 x100) +(4 x 10) + (2 x 1) Expanded form must be completely expanded. | Students need to round first, then solve. | | 3.2 | Addends, minuends, subtrahends, sums and differences
are limited to one thousand or less. | | | 3.3 | Limit given numbers to four digits. May use 9,999. Addends, minuends, subtrahends, sums and differences are limited to one thousand or less. Divisors no greater than ten and quotients no greater than one hundred. Limit factors of zero to ten and final products of one hundred. Only basic facts up to 10 x10 should be used within multiplication or division. | | | Unit 2 | : Multiplication & Division | | | 3.4 | Limits up to 10 X 10. Divisors no greater than ten and quotients no greater than one hundred. The picture may be an array or equal groups. | | | 3.5 | Limit the multiples of ten to a range of ten to ninety. Properties of operations limited to commutative and associative properties of multiplication. | | | 3.6 | Limits up to 10 X 10. Divisors no greater than ten and quotients no greater than one hundred. | | | 3.7 | Students should not be expected to use or recognize the formal names for the properties although they may be taught in the classroom. Limit factors of zero to ten and final products of one hundred. | | | | rude iviam stope and sequence 2010 2019 | | |--------|---|---| | | Divisors no greater than ten and quotients no greater
than one hundred | | | 3.8 | Limits up to 10 x 10. Limit factors of zero to then and final products of one hundred. Divisors no greater than ten and quotients no greater than one hundred. The term "fact families" or "number bonds" will not be used as part of the stem or answer. | 3.8 and 3.9 will be taught and one and tested together. | | 3.9 | Addends, minuends, subtrahends, sums and differences are limited to one thousand or less. Divisors no greater than ten and quotients no greater than one hundred. Limit factors of zero to ten and final products of one hundred. Only facts up to 10 x 10 should be used within multiplication or division. It should be noted that there may be more than one correct way to write an equation for a given word problem. The variable may be used one either side of the equal sign. Limit units of length to centimeters, inches, meters, kilometers, feet, yards and miles limit units of weight to ounces, pounds, grams or kilograms. | 3.8 and 3.9 will be taught and one and tested together. | | 3.10 | Limit factors of zero to ten and final products of one hundred. limited to addition and subtraction Addends, minuends, subtrahends, sums and differences are limited to one thousand or less. | | | 3.11 | Limit factors of zero to ten and final products of one hundred | | | Unit 3 | : Area & Perimeter | | | 3.12 | Can be assessed as a word problem with context. | | | 3.13 | Limits to no gaps or overlaps. Students should not have to use the formula. They should be able to count the unit squares. Grid lines or unit squares should be shown on the figures. Limits up to 10 x 10. Grid lines of unit squares should be shown within the objects. Distractors can have the same value as the correct area, but do not reflect multiplication of sides. (If correct answer is 3 x 4 then 6 x 2 may be a distractor.) | | | 3.14
3.15
3.16 | Limited to "square units" or "units squared". Limit units of length to centimeters, inches, meters, kilometers, feet, yards and miles. Limits up to 10 x 10. Limits to whole numbers. Limits up to 10 x 10 and no area greater than one hundred squared units. Dimensions of rectangles will be shown. | | |----------------------|---|--| | 3.17 | Limits to whole numbers. The smaller rectangles can have dimensions no longer than ten. | | | Unit 4 | : Fractions | | | 3.18 | Limit to fractions with denominators 2, 3, 4, 6 or 8. A third grade student is expected to know the term numerator. | | | 3.19 | Limit denominators 2, 3, 4, 6 or 8. Limit to fractions with denominators 2, 3, 4, 6 or 8. Limit to two-dimensional figures. This concept is foundational for the understanding of fractions. | | | 3.20 | Limit to fractions with denominators 2, 3, 4, 6 or 8. With same sized whole unit. Visual models include: fraction bars, fraction circles or number lines. | | | 3.21 | Limit to fractions with denominators 2, 3, 4, 6 or 8. Visual models include: fraction bars, fraction circles, number lines or drawings. | | | 3.22 | Limit to fractions with denominators 2, 3, 4, 6 or8. With same sized whole unit. Visual models include: fraction bars, fraction circles and number lines. | | | Unit 5 | : Time, Measurement & Geometry | | | 3.23 | The student will give a reasonable estimated interval of
the passage of time within fifty-nine minutes. | • 3.23 and 3.24 will be taught as one and tested together. | | 3.24 | • Limit to the minute and hour hands only (not the second hand). | • 3.23 and 3.24 will be taught as one and tested together. | | 3.25 | Students may use any strategy to solve for the passage of time within fifty-nine minutes. These problems may involve finding the start time, the end time or the interval. | | | 3.26 | Limit tools for length to rulers, yardsticks and meter sticks. Limit tools for liquid volume to pictures of a marked container/graduated cylinder. Limit tools for weight to scales. For estimating reasonable units of length, limit units to the nearest centimeter, inch, meters, kilometers, feet, yards or miles. For estimating reasonable units of liquid volume, limit to milliliters liters, cups or gallons. For estimating reasonable units of weight, limit to ounces, pounds, grams or kilograms. | | |--------|---|--| | 3.27 | Limit to circles, triangles, quadrilaterals, pentagons, hexagons and octagons. Limit to two-dimensional figures. | • 3.27 and 3.38 will be taught as one and tested together. | | 3.28 | Limit to two-dimensional figures. | • 3.27 and 3.38 will be taught as one and tested together. | | Unit 6 | : Data | | | 3.29 | Limit the sale of the bar graph from zero-one hundred with intervals of 1s, 2s, 5s and 10s. Limit the key of the picture graph to one picture=1, 2, 5 or 10. | | | 3.30 | Limit the scale of the bar graph from zero to one hundred with intervals of 1s, 2s, 5s and 10s. Limit the key of the picture graph to one picture =1, 2, 5 and 10. Whole numbers only. Addends, minuends, subtrahends, sums and differences are limited to one hundred or less. divisors no greater than ten and quotients no greater than one hundred. Limit factors of zero to then and final products of one hundred. Only basic facts up to 10x10 should be used within multiplication or division. | | | 3.31 | Limit to formal terms such as mode, range, median, mean or maximum. Limited to addition or subtraction operations based on whole number data. May be groups of data which would be calculate through multiplication of efficiency. | | | 3.32 | If listing numbers, it should be limited to whole numbers. When using halves and quarters the intervals should be listed for them. Limit the range to numbers between zero and twenty. | |